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• Fact. If H1 ⊆ H2, then ex(n,H1) ≤ ex(n,H2).
Proof. For any H1-free graph is also H2-free.

• Theorem. For s ≥ t ≥ 2, ex(n,Ks,t) ≤ Cs
1
t n2−

1
t for some constant C.

Proof. Consider any Ks,t-free graph G on n vertices, we count the number N of copies

(v, T ), where T ⊂ N(v) and |T | = t, then N =
∑

v∈V (G)

(
d(v)
t

)
.

Since G has no Ks,t, we have N ≤ (s− 1)
(
n
t

)
. Otherwise, there is a T ⊂ V (G) of size t such

that there are at least s many (v, t) pairs. Thus

(s− 1)

(
n

t

)
≥

∑
v∈V (G)

(
d(v)

t

)
≥ n

(∑
d(v)
n

t

)

(By Jensen’s inequality as f(x) =
(
x
t

)
convex), so

ex(G) ≤ 1

2
(2S − 1)

1
t n2−

1
t .

• Theorem. (Erdös-Stone-Simonovits) For any graph H with χ(H) = k + 1, ex(n,H) =

(1− 1
k + oH(1))n

2

2 .
Proof. Lower bound: Tk(n) is k-colorable, so H 6⊆ Tk(n).
Upper bound: By induction on χ(H) = k + 1.
Base case, when k = 1, χ(H) = 2. Let t = |V (H)|, then H ⊆ Kt,t, by fact,

ex(n,H) ≤ ex(n,Kt,t) ≤ Ct
1
t n2−

1
t = o(n2).

Inductive step: assume it is true for all H̃ with χ(H̃) ≤ k. Let H with χ(H) = k + 1,
consider H-free G on n vertices, let t = |V (H)|.(so k, t are fixed)
It suffices to prove: For any ε > 0 and sufficiently large n, any H-free graph G on n vertices
has ex(G) ≤ (1− 1

k + ε)n
2

2 .
In fact, we prove a stronger result: For any ε > 0 and sufficiently large n, any G with n
vertices and m ≥ (1− 1

k + ε)n
2

2 contains Tk+1((k + 1)t). (Tk+1((k + 1)t) ⊇ H)

Claim.: There is G̃ ⊂ G with |G̃| = ñ such that
-any v ∈ V (G̃) has degree at least (1− 1

k + 2ε
3 )ñ.

-ñ ≥ o(
√
ε)n.

Proof of claim. Let G0 := G, for Gi, if there is v ∈ V (G) such that dGi(v) < (1− 1
k + 2ε

3 )ni,
where ni = |V (Gi)|, then denote Gi+1 = Gi − v, otherwise we stop at Gj . In this process,

the number of deleted edge≤ (1− 1
k + 2ε

3 )[n+(n−1)+ ...+(n− j)] ≤ (1− 1
k + 2ε

3 )n
2

2 < e(G).
So Gj is not empty and

e(Gj) ≥ e(G)−#deleted edges

≥ (1− 1

k
+ ε)

n2

2
− (1− 1

k
+

2ε

3
)
n2

2

=
ε

6
n2

1



But e(Gj) ≤
n2
j

2 , then
n2
j

2 ≥
ε
6n

2, so nj ≥ o(
√
ε)n.

From now on, we will view Gj as the new ”G” and treat nj as the new ”n”, δ(G) ≥
(1− 1

k + 2ε
3 )n. Let

R = Ks, s, ..., s︸ ︷︷ ︸
k

where s = d tεe is fixed, so χ(R) = k.

By induction, e(G) ≥ (1− 1
k + 2ε

3 )n
2

2 > (1− 1
k−1 + oR(1))n

2

2 = ex(n,R), then G has a copy
of R.
Let R = K(B1, B2, ..., Bk), where |Bi| = s, let U = V (G) −

⋃k
i=1Bi, let W = {u ∈ U :

|N(u)
⋂
Bi| ≥ t for all i = 1, 2, ..., k}, let ẽ be the number of missing edges between R and

U , we have

ẽ ≤ |
k⋃

i=1

Bi|(
1

k
− 2ε

3
)n = ks(

1

k
− 2ε

3
)n

and
ẽ ≥ |U \W |(s− t) ≥ (|U | − |W |)s(1− ε)

Thus

ks(
1

k
− 2ε

3
)n ≥ (|U | − |W |)s(1− ε)

But |U | = n− ks, so

|W |(1− ε) ≥ nε(2k

3
− 1)− ks ≥ ε

3
n− ks ≥ ε

6
n

We have

|W | ≥ ε

10
n >

(
s

t

)k

(t− 1).

By pigeonhole’s principle, there is Ai ⊆ Bi of size t and Ak+1 ⊆ W such that |Ai| = t for
1 ≤ i ≤ k + 1 and

⋃k+1
i=1 Ai is

Kt, t, ..., t︸ ︷︷ ︸
k+1

= Tk+1((k + 1)t) ⊇ H.

To see the last step (pigeonhole’s principle), consider the following: For any Ai ⊆ Bi of size
t, define W (A1, ..., Ak) = {u ∈ W : N(u) ⊇

⋃
i=1 k + 1Ai}, so W can be partitioned into(

s
t

)k
W (A1, ..., Ak).

2


