Combinatorial Networks Week 5, Thursday

- Fact. If $H_1 \subseteq H_2$, then $ex(n, H_1) \leq ex(n, H_2)$. **Proof.** For any H_1 -free graph is also H_2 -free.
- Theorem. For $s \ge t \ge 2$, $ex(n, K_{s,t}) \le Cs^{\frac{1}{t}}n^{2-\frac{1}{t}}$ for some constant C. **Proof.** Consider any $K_{s,t}$ -free graph G on n vertices, we count the number N of copies (v, T), where $T \subset N(v)$ and |T| = t, then $N = \sum_{v \in V(G)} {\binom{d(v)}{t}}$. Since G has no $K_{s,t}$, we have $N \le (s-1){\binom{n}{t}}$. Otherwise, there is a $T \subset V(G)$ of size t such that there are at least s many (v, t) pairs. Thus

$$(s-1)\binom{n}{t} \ge \sum_{v \in V(G)} \binom{d(v)}{t} \ge n\binom{\sum d(v)}{t}$$

(By Jensen's inequality as $f(x) = \begin{pmatrix} x \\ t \end{pmatrix}$ convex), so

$$ex(G) \le \frac{1}{2}(2S-1)^{\frac{1}{t}}n^{2-\frac{1}{t}}$$

• **Theorem.** (Erdös-Stone-Simonovits) For any graph H with $\chi(H) = k + 1$, $ex(n, H) = (1 - \frac{1}{k} + o_H(1))\frac{n^2}{2}$.

Proof. Lower bound: $T_k(n)$ is k-colorable, so $H \not\subseteq T_k(n)$. Upper bound: By induction on $\chi(H) = k + 1$.

Base case, when k = 1, $\chi(H) = 2$. Let t = |V(H)|, then $H \subseteq K_{t,t}$, by fact,

$$ex(n, H) \le ex(n, K_{t,t}) \le Ct^{\frac{1}{t}}n^{2-\frac{1}{t}} = o(n^2)$$

Inductive step: assume it is true for all \widetilde{H} with $\chi(\widetilde{H}) \leq k$. Let H with $\chi(H) = k + 1$, consider H-free G on n vertices, let t = |V(H)|.(so k, t are fixed)

It suffices to prove: For any $\varepsilon > 0$ and sufficiently large n, any H-free graph G on n vertices has $ex(G) \leq (1 - \frac{1}{k} + \varepsilon)\frac{n^2}{2}$.

In fact, we prove a stronger result: For any $\varepsilon > 0$ and sufficiently large n, any G with n vertices and $m \ge (1 - \frac{1}{k} + \varepsilon)\frac{n^2}{2}$ contains $T_{k+1}((k+1)t)$. $(T_{k+1}((k+1)t) \supseteq H)$

Claim.: There is $\widetilde{G} \subset G$ with $|\widetilde{G}| = \widetilde{n}$ such that -any $v \in V(\widetilde{G})$ has degree at least $(1 - \frac{1}{k} + \frac{2\varepsilon}{3})\widetilde{n}$. $-\widetilde{n} \ge o(\sqrt{\varepsilon})n$.

Proof of claim. Let $G_0 := G$, for G_i , if there is $v \in V(G)$ such that $d_{G_i}(v) < (1 - \frac{1}{k} + \frac{2\varepsilon}{3})n_i$, where $n_i = |V(G_i)|$, then denote $G_{i+1} = G_i - v$, otherwise we stop at G_j . In this process, the number of deleted edge $\leq (1 - \frac{1}{k} + \frac{2\varepsilon}{3})[n + (n-1) + ... + (n-j)] \leq (1 - \frac{1}{k} + \frac{2\varepsilon}{3})\frac{n^2}{2} < e(G)$. So G_j is not empty and

$$\begin{array}{rcl} e(G_j) & \geq & e(G) - \# \text{deleted edges} \\ & \geq & (1 - \frac{1}{k} + \varepsilon) \frac{n^2}{2} - (1 - \frac{1}{k} + \frac{2\varepsilon}{3}) \frac{n^2}{2} \\ & = & \frac{\varepsilon}{6} n^2 \end{array}$$

But $e(G_j) \leq \frac{n_j^2}{2}$, then $\frac{n_j^2}{2} \geq \frac{\varepsilon}{6}n^2$, so $n_j \geq o(\sqrt{\varepsilon})n$. From now on, we will view G_j as the new "G" and treat n_j as the new "n", $\delta(G) \geq (1 - \frac{1}{k} + \frac{2\varepsilon}{3})n$. Let

$$R = K_{\underbrace{s, s, \dots, s}_{k}}$$

where $s = \lceil \frac{t}{\varepsilon} \rceil$ is fixed, so $\chi(R) = k$. By induction, $e(G) \ge (1 - \frac{1}{k} + \frac{2\varepsilon}{3})\frac{n^2}{2} > (1 - \frac{1}{k-1} + o_R(1))\frac{n^2}{2} = ex(n, R)$, then G has a copy of R. Let $R = K(B_1, B_2, ..., B_k)$, where $|B_i| = s$, let $U = V(G) - \bigcup_{i=1}^k B_i$, let $W = \{u \in U : |N(u) \bigcap B_i| \ge t \text{ for all } i = 1, 2, ..., k\}$, let \tilde{e} be the number of missing edges between R and U, we have

$$\widetilde{e} \leq |\bigcup_{i=1}^{k} B_i| (\frac{1}{k} - \frac{2\varepsilon}{3})n = ks(\frac{1}{k} - \frac{2\varepsilon}{3})n$$

and

$$\widetilde{e} \ge |U \setminus W|(s-t) \ge (|U| - |W|)s(1-\varepsilon)$$

Thus

$$ks(\frac{1}{k} - \frac{2\varepsilon}{3})n \ge (|U| - |W|)s(1 - \varepsilon)$$

But |U| = n - ks, so

$$|W|(1-\varepsilon) \ge n\varepsilon(\frac{2k}{3}-1) - ks \ge \frac{\varepsilon}{3}n - ks \ge \frac{\varepsilon}{6}n$$

We have

$$|W| \ge \frac{\varepsilon}{10}n > {\binom{s}{t}}^k(t-1).$$

By pigeonhole's principle, there is $A_i \subseteq B_i$ of size t and $A_{k+1} \subseteq W$ such that $|A_i| = t$ for $1 \leq i \leq k+1$ and $\bigcup_{i=1}^{k+1} A_i$ is

$$K_{\underbrace{t,t,\ldots,t}_{k+1}} = T_{k+1}((k+1)t) \supseteq H.$$

To see the last step (pigeonhole's principle), consider the following: For any $A_i \subseteq B_i$ of size t, define $W(A_1, ..., A_k) = \{u \in W : N(u) \supseteq \bigcup_{i=1} k + 1A_i\}$, so W can be partitioned into $\binom{s}{t}^k W(A_1, ..., A_k)$.