Combinatorial Networks
Week 5, Thursday

e Fact. If H; C Hs, then ex(n, Hy) < ex(n, Hs).
Proof. For any H;-free graph is also Ha-free. 1

e Theorem. For s >t > 2, ex(n, Ks;) < C’s%nQ_% for some constant C.
Proof. Consider any K, ;-free graph G' on n vertices, we count the number N of copies
(v,T), where T'C N(v) and |T| = ¢, then N =3 v/ (d(t”)).
Since G has no Ky, we have N < (s —1)(7). Otherwise, there is a T' C V(G) of size ¢ such
that there are at least s many (v, t) pairs. Thus

(s—1) <7Z) > UE%:G) (d(tv)) > n(z:%@)>

(By Jensen’s inequality as f(z) = (f) convex), so
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ex(G) < =(25 — 1)in*t.
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e Theorem. (Erdés-Stone-Simonovits) For any graph H with x(H) = k + 1, ex(n,H) =
(1L yop(1)n.
Proof. Lower bound: Tj(n) is k-colorable, so H Z Ty (n).
Upper bound: By induction on x(H) =k + 1.
Base case, when k =1, x(H) = 2. Let t = |V (H)|, then H C K;, by fact,

ex(n,H) < ex(n,K;) < Ctin2t = o(n?).

Inductive step: assume it is true for all H with y(H) < k. Let H with xy(H) = k + 1,
consider H-free G on n vertices, let ¢t = |V (H)|.(so k,t are fixed)

It suffices to prove: For any € > 0 and sufficiently large n, any H-free graph G on n vertices
has ex(G) < (1— 1 +€)”—22.

In fact, we prove a stronger result: For any ¢ > 0 and sufficiently large n, any G with n
vertices and m > (1 — 7 + &?)%2 contains Tj11((k+ 1)t). (Trr1((E+1)t) O H)

Claim.: There is G C G with |G| = 7 such that

-any v € V(G) has degree at least (1 — T+ E)n.

-n > o(y/e)n.

Proof of claim. Let Gy := G, for G, if there is v € V(@) such that dg, (v) < (1—1+2)n;,
where n; = |V(G;)|, then denote G; 1 = G; — v, otherwise we stop at G;. In this process,
the number of deleted edge< (1— 7+ Z)[n+(n—1)+..+(n—j)] < (1— 1+ %)%2 < e(Q).
So G is not empty and

e(Gj) > e(G) — #deleted edges
1 n? 1 2 n?
> 1--+49t —a--+ 5T
= Uoptey — =g+ 33
€ 2
= -n
6



n2 n2
But e(G;) < 4, then 4 > £n?, so n; > o(y/e)n. ]
From now on, we will view G; as the new "G” and treat n; as the new "n”, §(G) >
(1— 7+ 2)n. Let
R=Ks s, ..,s
k
where s = [1] is fixed, so x(R) = k.
By induction, e(G) > (1 — ¢ + %)”—2 >(1-25+ 011:5(1))"72 = ex(n, R), then G has a copy
of R.
Let R = K (B, Ba, ..., B;), where |B;| = s, let U = V(G) — Ule Bi,let W ={uelU:
|IN(u)(Bi| >t for alli =1,2,...,k}, let € be the number of missing edges between R and

U, we have
k
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and
e [U\W|(s—t) = (U] - [W])s(1 —¢)
Thus L 9
€
ks(y = 5 )n = (U= [W)s(1 —¢)
But |[U| =n — ks, so
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We have N
€ S

Wl > — t—1).

Wiz o> () -
By pigeonhole’s principle, there is A; C B; of size t and A1 C W such that |A4;| = ¢ for
1<i<k+1and T 4 is

K¢t =Tep1((k+1)t) 2 H.
——
k+1
|

To see the last step (pigeonhole’s principle), consider the following: For any A; C B; of size

t, define W(Aq,...,Ay) = {u € W : N(u) D J,_, k + 14;}, so W can be partitioned into
) W(AL ..., Ap).



